考試研究是人生的第二次選擇,為了提高競爭力,考試研究成為改變人生的必由之一。在這個(gè)過(guò)程中,福州*州*研究生入學(xué)考試的數學(xué)而煩惱。以下是2014年福州*研究生入學(xué)考試中你會(huì )遇到的幾種常見(jiàn)問(wèn)題的簡(jiǎn)要解釋。福州*電信專(zhuān)業(yè)考試數學(xué)考數學(xué)幾?福州*電氣類(lèi)專(zhuān)業(yè)考試需要考什么科目?,金融學(xué)考研考數學(xué)幾?我在等一些困惑!
1.2014福州*考試數學(xué)有多少常見(jiàn)問(wèn)題類(lèi)型?
可以參考思遠福大考試研究網(wǎng)舉的一些常見(jiàn)問(wèn)題類(lèi)型1:追求極限是追求極限是高等數學(xué)的基本要求,也是每年必考的內容。無(wú)論是數學(xué)1、數學(xué)2還是數學(xué)3,每年的考試問(wèn)題都有關(guān)系,不同之處在于有時(shí)以4分鐘的小問(wèn)題形式出現,主題簡(jiǎn)單的大問(wèn)題出現,需要使用的方法綜合性強。例如,大問(wèn)題可能需要等價(jià)的小代替,泰勒開(kāi)展式、羅比達法則、分離因子式、重要極限等幾種方法,考生有時(shí)需要選擇多種方法綜合完成問(wèn)題。此外,分段函數在個(gè)別點(diǎn)的導數、函數圖形的漸近線(xiàn)、以極限形式定義的函數的連續性、導向性的研究等也需要用極限手段達到目的。問(wèn)題類(lèi)型2:利用中值定理證明書(shū)的等式或不等式,利用函數單調證明書(shū)的不等式,雖然不能說(shuō)每年一定要考試,但基本上10年有9年有關(guān)系。等式證明書(shū)包括使用4個(gè)常見(jiàn)的微分中值定理(即羅爾中值定理、拉格朗日值定理、柯西中值定理、泰勒中值定理),一個(gè)定點(diǎn)中值定理的不等式證明書(shū)有時(shí)可以使用中值定理,也可以使用函數單調性。這里泰勒中值定理的使用時(shí)的一個(gè)難點(diǎn),但考查的概率不大。 題型三:一元函數求導數,多元函數求偏導數 求導數問(wèn)題主要考查基本公式及運算能力,當然也包括對函數關(guān)系的處理能力。一元函數的指導可能是參數方程的指導,變化點(diǎn)的指導和應用問(wèn)題與指導、高級指導相關(guān)的多元函數(主要是二元函數)的指導數基本上每年都在調查,給出的函數可能是比較復雜的顯示函數,也可能是隱藏函數(包括方程組決定的隱藏函數)。此外,二元函數的極值與條件極值與實(shí)際問(wèn)題密切相關(guān),是調查重點(diǎn)。極值的充分條件,必要條件均涉及二元函數偏導數。 題型四:級數問(wèn)題 常數項級數(特別是正項級數,交錯級數)斂散性的判別,條件收斂與絕對收斂的本質(zhì)含義均是考查的重點(diǎn),但常常以小題形式出現。函數級數(應該級數,對于數一的考生來(lái)說(shuō)有傅里葉級數,但調查頻率不高)的收斂半徑、收斂區間、收斂域、函數等和函數在考試中占有較高的分數。問(wèn)題類(lèi)型5:積分的計算包括不定積分、固定積分、異常積分的計算和雙重積分的計算,對于數一考生來(lái)說(shuō)主要是三重積分、曲線(xiàn)積分、曲面積分的計算。這是以調查運算能力和處理問(wèn)題的技術(shù)能力為主,輔助公式的熟悉和空間想象力的調查。在復習中要注意靈活處理一些問(wèn)題,如積分幾何意義的使用、重心、形心式的使用、對稱(chēng)性的使用等。問(wèn)題類(lèi)型6:微分方程,常規微分方程的方法是固定的,無(wú)論是階段性方程,都可以分離變量方程,階段性方程,階段性常系數,階段性方程,階段性方程,階段性方程,階段性方程,階段性方程,階段性方程但是,在此需要注意的是,研究生考試對微分方程的考試往往有反向的方法。也就是說(shuō),通常提出方程要求解讀和特解,現在提出解讀和特解方程。這就需要考生對方程與其通解,熟練掌握特解之間的關(guān)系。
2.福州*電信專(zhuān)業(yè)考研數學(xué)是考數學(xué)幾?
去看他們學(xué)校招生簡(jiǎn)章。